Difference between revisions of "Wave run-up"

From Coastal Wiki
Jump to: navigation, search
Line 1: Line 1:
 
{{Definition|title=Wave run-up  
 
{{Definition|title=Wave run-up  
|definition=Landward incursion of a wave. Wave run-up is usually expressed as the maximum onshore elevation reached by a wave, relative to the wave-averaged shoreline position.}}
+
|definition= Wave run-up is the maximum onshore elevation reached by waves, relative to the shoreline position in the absence of waves.}}
  
  
Wave run-up is an important parameter for assessing the safety of sea dikes or coastal settlements. Wave run-up is the sum of [[Shallow-water wave theory#Wave set-down and set-up|wave set-up]] and swash uprush (see [[Swash zone dynamics]]) and must be added to the water level reached as a result of tides and storm setup.  
+
==Notes==
 +
Wave run-up is an important parameter for assessing the safety of sea dikes or coastal settlements. Wave run-up is the sum of [[wave set-up]] and swash uprush (see [[Swash zone dynamics]]) and must be added to the water level reached as a result of tides and wind set-up.  
  
 
By waves is meant: waves generated by wind (locally or on the ocean) or waves generated by incidental disturbances of the sea surface such as tsunamis, seiches or ship waves. Wave run-up is often indicated with the sympol <math> R </math>.  
 
By waves is meant: waves generated by wind (locally or on the ocean) or waves generated by incidental disturbances of the sea surface such as tsunamis, seiches or ship waves. Wave run-up is often indicated with the sympol <math> R </math>.  
  
For waves collapsing on the beach, the wave run-up can be estimated in first approach with the formula of Hunt (1959) <ref>Hunt, I.A. 1959. Design of seawalls and breakwaters. J. Waterw. Harbors Division ASCE 85: 123–152</ref>,
+
For waves collapsing on the beach, the wave run-up can be estimated to first approximation with the formula of Hunt (1959) <ref>Hunt, I.A. 1959. Design of seawalls and breakwaters. J. Waterw. Harbors Division ASCE 85: 123–152</ref>,
  
<math>R = H \xi  ,</math>
+
<math>R = \eta_u + H \xi  ,</math>
  
where <math>H</math> is the offshore wave height  and <math>\xi</math> is the wave similarity parameter,
+
where <math>\eta_u</math> is the [[wave set-up]], <math>H</math> is the offshore wave height  and <math>\xi</math> is the wave similarity parameter,
  
<math>\xi = \Large\frac{S}{\sqrt{H/L}}\normalsize = S \, T \Large\sqrt{\frac{g}{4\pi H}}\normalsize , </math>
+
<math>\xi = \Large\frac{\tan \beta}{\sqrt{H/L}}\normalsize = T \tan \beta  \Large\sqrt{\frac{g}{4\pi H}}\normalsize , </math>
  
where <math>L = g T^2/(2 \pi)</math> is the offshore wave length, <math>S</math> is the beach slope and <math>T</math> is the wave period.
+
where <math>L = g T^2/(2 \pi)</math> is the offshore wave length, <math>\beta</math> is the beach slope and <math>T</math> is the wave period.
The horizontal wave incursion is approximately given by <math> R / S</math>.  
+
The horizontal wave incursion is approximately given by <math> R / \tan \beta</math>.  
  
  
For more precise estimates of wave run-up see:
+
==Related articles==
 +
: [[Swash zone dynamics]]
 +
: [[Wave set-up]]
 
: [[Swash]]
 
: [[Swash]]
: [[Swash zone dynamics]]
 
 
: [[Tsunami]]
 
: [[Tsunami]]
  

Revision as of 21:53, 2 April 2021

Definition of Wave run-up:
Wave run-up is the maximum onshore elevation reached by waves, relative to the shoreline position in the absence of waves.
This is the common definition for Wave run-up, other definitions can be discussed in the article


Notes

Wave run-up is an important parameter for assessing the safety of sea dikes or coastal settlements. Wave run-up is the sum of wave set-up and swash uprush (see Swash zone dynamics) and must be added to the water level reached as a result of tides and wind set-up.

By waves is meant: waves generated by wind (locally or on the ocean) or waves generated by incidental disturbances of the sea surface such as tsunamis, seiches or ship waves. Wave run-up is often indicated with the sympol R .

For waves collapsing on the beach, the wave run-up can be estimated to first approximation with the formula of Hunt (1959) [1],

R = \eta_u + H \xi ,

where \eta_u is the wave set-up, H is the offshore wave height and \xi is the wave similarity parameter,

\xi = \Large\frac{\tan \beta}{\sqrt{H/L}}\normalsize = T \tan \beta \Large\sqrt{\frac{g}{4\pi H}}\normalsize ,

where L = g T^2/(2 \pi) is the offshore wave length, \beta is the beach slope and T is the wave period. The horizontal wave incursion is approximately given by R / \tan \beta.


Related articles

Swash zone dynamics
Wave set-up
Swash
Tsunami


References

  1. Jump up Hunt, I.A. 1959. Design of seawalls and breakwaters. J. Waterw. Harbors Division ASCE 85: 123–152