Difference between revisions of "Template:This weeks featured article"

From Coastal Wiki
Jump to: navigation, search
(Application and use of underwater video)
(Application and use of underwater video)
Line 1: Line 1:
 
==Application and use of underwater video==
 
==Application and use of underwater video==
  
[[Image:UWVideo_Boutan.jpg|thumb|450px|left|Figure 1: Louis Boutan, the first published underwater photographer pioneered not only photography, but diving equipment in general.]] This article is about the history and application of underwater video. Related articles are underwater video systems, which is about equipment of underwater video systems; and video technology, which deals with video as such. Video imaging in wells and boreholes is similar to underwater video, but puts constraints on the shape and size of the equipment, as does for example underwater video in sewer pipes, nuclear power plants or fish tanks.
+
[[Image:UWVideo_Boutan.jpg|thumb|450px|left|Figure 1: Louis Boutan, the first published underwater photographer pioneered not only photography, but diving equipment in general.]] This article is about the history and application of underwater video. Related articles are [[underwater video systems]], which is about equipment of underwater video systems; and video technology, which deals with video as such. Video imaging in wells and boreholes is similar to underwater video, but puts constraints on the shape and size of the equipment, as does for example underwater video in sewer pipes, nuclear power plants or fish tanks.
  
 
From the start, underwater video has been used for marine biological studies (see also Figure 3). It may be abundance (Smith & Papadopoulou, 2003<ref name="Smith">Smith, C. J., Papadopoulou, K.-N. (2003); Burrow density and stock size fluctuations of Nephrops norvegicus in a semi-enclosed bay; ICES Journal of Marine Science; 60, pp. 798–805</ref>; Moser et al, 1998<ref name="Moser">Moser, M. L., Auster P. J., Bichy, J. B. (1998); Effects of mat morphology on large Sargassum-associated fishes: observations from a remotely operated vehicle (ROV) and free-floating video camcorders; Environmental Biology of Fishes; 51, pp. 391–398</ref>) behavioural studies (Grémillet et al, 2006<ref name="Gremillet>Grémillet, D., Enstipp, M. R., Boudiffa, M., Liu, H. (2006); Do cormorants injure fish without eating them? An underwater video study; Marine Biology; 148, pp. 1081–1087 </ref>; Esteve, 2007<ref name="Esteve"> Esteve, M. (2007);Two examples of fixed behavioural patterns in salmonines: female false spawning and male digging; Journal of Ethology; 25:1, pp. 63-70</ref>) [[habitat mapping]] (Ryan et al, 2007<ref name="Ryan"> Ryan, D. A., Brooke, B. P., Collins, L. B., Kendrick, G. A., Baxter, K. J., Bickers, A. N., Siwabessy, P. J. W., Pattiaratchi, C. B. (2007); The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia; Estuarine, Coastal and Shelf Science; 72:1-2, pp. 379-386</ref>; Abdo et al, 2004<ref name="Abdo">Abdo, D., Burgess, G., Coleman, K. (2004); Surveys of benthic reef communities using underwater video; Long-term monitoring of the great Barrier reef Standard Operational Procedure Number 2, 3rd Revised Edition; Australian Institute of Marine Science, Townsville 2004; ISBN0-64232231</ref>)
 
From the start, underwater video has been used for marine biological studies (see also Figure 3). It may be abundance (Smith & Papadopoulou, 2003<ref name="Smith">Smith, C. J., Papadopoulou, K.-N. (2003); Burrow density and stock size fluctuations of Nephrops norvegicus in a semi-enclosed bay; ICES Journal of Marine Science; 60, pp. 798–805</ref>; Moser et al, 1998<ref name="Moser">Moser, M. L., Auster P. J., Bichy, J. B. (1998); Effects of mat morphology on large Sargassum-associated fishes: observations from a remotely operated vehicle (ROV) and free-floating video camcorders; Environmental Biology of Fishes; 51, pp. 391–398</ref>) behavioural studies (Grémillet et al, 2006<ref name="Gremillet>Grémillet, D., Enstipp, M. R., Boudiffa, M., Liu, H. (2006); Do cormorants injure fish without eating them? An underwater video study; Marine Biology; 148, pp. 1081–1087 </ref>; Esteve, 2007<ref name="Esteve"> Esteve, M. (2007);Two examples of fixed behavioural patterns in salmonines: female false spawning and male digging; Journal of Ethology; 25:1, pp. 63-70</ref>) [[habitat mapping]] (Ryan et al, 2007<ref name="Ryan"> Ryan, D. A., Brooke, B. P., Collins, L. B., Kendrick, G. A., Baxter, K. J., Bickers, A. N., Siwabessy, P. J. W., Pattiaratchi, C. B. (2007); The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia; Estuarine, Coastal and Shelf Science; 72:1-2, pp. 379-386</ref>; Abdo et al, 2004<ref name="Abdo">Abdo, D., Burgess, G., Coleman, K. (2004); Surveys of benthic reef communities using underwater video; Long-term monitoring of the great Barrier reef Standard Operational Procedure Number 2, 3rd Revised Edition; Australian Institute of Marine Science, Townsville 2004; ISBN0-64232231</ref>)

Revision as of 15:23, 18 November 2009

Application and use of underwater video

Figure 1: Louis Boutan, the first published underwater photographer pioneered not only photography, but diving equipment in general.
This article is about the history and application of underwater video. Related articles are underwater video systems, which is about equipment of underwater video systems; and video technology, which deals with video as such. Video imaging in wells and boreholes is similar to underwater video, but puts constraints on the shape and size of the equipment, as does for example underwater video in sewer pipes, nuclear power plants or fish tanks.

From the start, underwater video has been used for marine biological studies (see also Figure 3). It may be abundance (Smith & Papadopoulou, 2003[1]; Moser et al, 1998[2]) behavioural studies (Grémillet et al, 2006[3]; Esteve, 2007[4]) habitat mapping (Ryan et al, 2007[5]; Abdo et al, 2004[6]) studies of fishing and trawling (Zhou & Shirley (1997[7]; Cooper and Hickey, 1987[8]) and whether the seabed is damaged or not by it (Vorbeg, 2000[9]; Linnanne et al, 2000[10]) even in combination with a water sampler (Dounas, 2006[11]) and to separate living corals from dead (Harris et al, 2004[12].)

It has also been used for
  1. Smith, C. J., Papadopoulou, K.-N. (2003); Burrow density and stock size fluctuations of Nephrops norvegicus in a semi-enclosed bay; ICES Journal of Marine Science; 60, pp. 798–805
  2. Moser, M. L., Auster P. J., Bichy, J. B. (1998); Effects of mat morphology on large Sargassum-associated fishes: observations from a remotely operated vehicle (ROV) and free-floating video camcorders; Environmental Biology of Fishes; 51, pp. 391–398
  3. Grémillet, D., Enstipp, M. R., Boudiffa, M., Liu, H. (2006); Do cormorants injure fish without eating them? An underwater video study; Marine Biology; 148, pp. 1081–1087
  4. Esteve, M. (2007);Two examples of fixed behavioural patterns in salmonines: female false spawning and male digging; Journal of Ethology; 25:1, pp. 63-70
  5. Ryan, D. A., Brooke, B. P., Collins, L. B., Kendrick, G. A., Baxter, K. J., Bickers, A. N., Siwabessy, P. J. W., Pattiaratchi, C. B. (2007); The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia; Estuarine, Coastal and Shelf Science; 72:1-2, pp. 379-386
  6. Abdo, D., Burgess, G., Coleman, K. (2004); Surveys of benthic reef communities using underwater video; Long-term monitoring of the great Barrier reef Standard Operational Procedure Number 2, 3rd Revised Edition; Australian Institute of Marine Science, Townsville 2004; ISBN0-64232231
  7. Zhou, S. Shirley T. C. (1997); Performance of two red king crab pot designs; Canadian Journal of Fisheries and Aquatic Sciences / Journal canadien des sciences halieutiques et aquatiques; 54, pp 1858–1864
  8. Cooper, C., Hickey, W. (1987); Selectivity experiments with square mesh cod-ends on haddock and cod; IEEE OCEANS; 19, pp. 608-613
  9. Vorberg, R. (2000); Effects of shrimp fisheries on reefs of Sabellaria spinulosa (Polychaeta); ICES Journal of Marine Science; 57 pp. 1416–1420
  10. Linnane A., Ball B., Munday B., van Marlen B., Bergman M., Fonteyne R. (2000): A review of potential techniques to reduce the environmental impact of demersal trawl; Irish Fisheries Investigation Series Publications (New Series) No. 7; ISSN0578-7467
  11. Dounas, C. G. (2006); A new apparatus for the direct measurement of the effects of otter trawling on benthic nutrient releases; Journal of Experimental Marine Biology and Ecology; 339, pp. 251 – 259
  12. Harris, P. T., Heap, A. D., Wassenberg, T., Passlow, V. (2004); Submerged coral reefs in the Gulf of Carpentaria, Australia; Marine Geology; 207:1-4, pp. 185-191