Difference between revisions of "Eutrophication"

From Coastal Wiki
Jump to: navigation, search
(External links)
 
(138 intermediate revisions by 7 users not shown)
Line 1: Line 1:
Eutrophication is an important process involving enrichment of water by excess nutrients.  It can cause serious problems in the coastal zone through disturbance of ecological balances and fisheries, and through interference with recreational activities and quality of life. 
 
  
 +
{{Definition
 +
|title=
 +
Eutrophication
 +
|definition = (1) An increase in the supply of organic matter (Nixon, 1995<ref>Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219</ref>) <br>
 +
(2) A condition in an aquatic ecosystem where high nutrient concentrations stimulate growth of [[algae]] which leads to imbalanced functioning of the system (HELCOM 2006<ref>HELCOM 2006[http://www.helcom.fi/environment2/eutrophication/en_GB/front/]</ref>)<br>
 +
(3) The enrichment of water by [[nutrient]]s, especially nitrogen and/or phosphorus and organic matter, causing an increased growth of algae and higher forms of plant life to produce an adverse deviation in structure, function and stability of organisms present in the water and to the quality of water concerned, compared to reference conditions (Andersen et al. 2006<ref>Andersen, J. H., Schlüter, L. and Ærtebjerg, G. 2006. Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. J. Plankton Res 28(7): 621-628</ref>)<br>
 +
(4) The enrichment of water by nutrients causing an accelerated growth of algae and higher forms of plant life to produce an undesirable disturbance to the balance of organisms present in the water and to the quality of the water concerned” (OSPAR 2003<ref>OSPAR, 2003. In: Strategies of the OSPAR commission for the protection of the marine environment of the north-east Atlantic (reference number: 2003e21)</ref>
 +
}}
  
==What is eutrophication about?==
 
*It’s about '''increased productivity''' (conversion of light and carbon dioxide into living organic matter – a process being limited by ''nitrogen'' and/or ''phosphorus'') and unacceptable ecological effects as algal blooms, oxygen depletion, kills of benthic animals and fish
 
  
*It’s caused by '''increased inputs''' of nutrients from
+
Eutrophication occurs when a limiting factor on the rate of growth and production of primary producers is released, most frequently via an input of inorganic or organic nutrients (Howarth 1988<ref>Howarth, R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Annual Rev. Ecol. Syst. 19: 89–110</ref>). High [[primary production]] boosted by eutrophication usually leads to oxygen depletion caused by decay of organic matter.
**point sources
 
**activities in the upstream catchment (''e.g.'' losses from agriculture)  
 
**atmospheric deposition
 
  
*And it’s about money!
 
  
 +
==Nutrients involved in eutrophication==
 +
====Nutrients needed in large quantities====
 +
*Nitrogen (<math>N</math>) is often a limiting nutrient to growth. Most common reactive form is dissolved inorganic nitrogen (DIN) found in marine waters as nitrate (<math>NO_3^-</math>), nitrite (<math>NO_2^-</math>) and ammonium (<math>NH_4^+</math>). Nitrogen also occurs in the largely refractory form of dissolved organic matter (DOM) as dissolved organic nitrogen (DON). Small amounts of nitrogen occur in the not directly usable form of particulate organic matter (POM).
 +
*Phosphorous (<math>P</math>) is often a limiting nutrient to growth. Most common reactive form is dissolved inorganic phosphorus (DIP) found as phosphate (<math>PO_4^{3-}</math>). Phosphorus also occurs in the largely refractory form of dissolved organic matter (DOM) as dissolved organic phosphorus (DOP). Small amounts of phosphorus occur in the not directly usable form of particulate organic matter (POM).
 +
*Potassium (<math>K</math>)
 +
*Calcium (<math>Ca</math>)
 +
*Magnesium (<math>Mg</math>)
 +
*Sulfur (<math>S</math>)
 +
* Silicium (<math>Si</math>), mainly as silicic acid <math>Si(OH)_4</math> can be a limiting nutrient for diatoms
 +
====Nutrients needed in trace amounts====
 +
*Iron (<math>Fe</math>) can be a limiting nutrient
 +
*Boron (<math>B</math>)
 +
*Chlorine (<math>Cl</math>)
 +
*Manganese (<math>Mn</math>)
 +
*Zinc (<math>Zn</math>) can be a limiting nutrient
 +
*Copper (<math>Cu</math>)
 +
*Nickel (<math>Ni</math>)
 +
*Molybdenum (<math>Mo</math>)
  
===What are we really talking about?===
+
==Eutrophication indicators==
[[image:Baltic.jpg|thumb|right|Cyanobacteria bloom, Western Baltic, 1997]]
+
There are no widely applicable indicators of eutrophication due to the high variation in natural
;Eutrophication : “eu” = “well” or “good”
+
conditions and the interaction of multiple factors influencing eutrophication. Often Chlorophyll a (<math>Cl \, a</math>) is used as indicator of eutrophication, as a proxy for phytoplankton biomass. However, the drawback of using of <math>Cl \, a</math> as an indicator is that there can be no increase in <math>Cl \, a</math> after nutrient concentrations have exceeded the threshold beyond which other factors (e.g. light, grazing) are limiting. Additionally, <math>Cl \, a</math> measures only changes in the abundance of primary producers and cannot indicate any changes in community composition that may occur simultaneously (Jessen et al. 2015<ref>Jessen, C., Bednarz, V.N., Rix, L., Teichberg, M. and Wild, C. 2015. Marine Eutrophication. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht</ref>).
:“trope” = “nourishment”
 
  
  
But is “eutrophication” good?
+
==Articles related to eutrophication==
*In general: NO … it is actually ”bad” …
 
*.Too many nutrients in wrong places may cause problems and result in changes in structure, function and stability of the marine ecosystems
 
  
*Eutrophication is ”too much of a good thing”
+
===Eutrophication processes===
 +
* [[Eutrophication in coastal environments]]
 +
* [[What causes eutrophication?]]
 +
* [[Nutrient conversion in the marine environment]]
 +
* [[Which resource limits coastal phytoplankton growth/ abundance: underwater light or nutrients?]]
 +
* [[Marine microorganisms]]
 +
* [[Marine Plankton]]
  
 +
===Eutrophication impacts===
 +
* [[Threats to the coastal zone]]
 +
* [[Coastal pollution and impacts]]
 +
* [[Possible consequences of eutrophication]]
 +
* [[Algal bloom]]
 +
* [[Plankton bloom]]
 +
* [[Case studies eutrophication]]
  
==Some definitions:==
+
===Eutrophication monitoring===
[[image:German Bight.jpg|thumb|right|Noctiluca milaris bloom, German Bight, 2000]]
+
* [[In situ monitoring of eutrophication]]
;Eutrophication : An increase in the supply of organic matter (Nixon 1995<ref>Nixon, S. W. (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.[ISI]</ref>)
+
* [[Plankton remote sensing]]
 +
* [[Plankton remote sensing North Sea]]
 +
* [[Real-time algae monitoring]]
 +
* [[Optical measurements in coastal waters]]
 +
* [[Nutrient analysers]]
 +
* [[Differentiation of major algal groups by optical absorption signatures]]
 +
* [[Sampling tools for the marine environment]]
 +
* [[FerryBox - Continuous and automatic water quality observations along transects]]
 +
* [[Detecting the unknown - novelty detection of exceptional water reflectance spectra]]
 +
* [[The Baltic Algae Watch System - a remote sensing application for monitoring cyanobacterial blooms in the Baltic Sea]]
  
: A condition in an aquatic ecosystem where high nutrient concentrations stimulate growth of algae which leads to imbalanced functioning of the system” (HELCOM)<ref> http://www.helcom.fi/environment2/eutrophication/en_GB/front/</ref>.
+
===Eutrophication modelling===
 +
* [[Coupled hydrodynamic - water quality - ecological modelling]]
 +
* [[Nutrient loading of coastal waters]]
  
;Alternative proposal : The enrichment of water by nutrients, especially nitrogen and/or phosphorus and organic matter, causing an increased growth of algae and higher forms of plant life to produce an unacceptable deviation in structure, function and stability of organisms present in the water and to the quality of water concerned, compared to reference conditions (Andersen et al. (2006)<ref>Andersen, J. H., Schlüter, L. and Ærtebjerg, G. (2006) Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. J. Plankton Res. 28(7): 621-628.</ref>)
+
===Eutrophication policy===
 +
* [[OSPAR and eutrophication]]
 +
* [[OSPAR eutrophication assessment]]
 +
* [[European policy on eutrophication: introduction]]
 +
* [[European Context of Nutrient Dynamics]]
 +
* [[Eutrophication related monitoring tasks and WFD for coastal waters in Greece]]
  
  
 
==The process of eutrophication==
 
The different processes and effects of coastal eutrophication are well documented (Cloern, 2001<ref>Cloern, J. (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser., 210, 223–253.[ISI]</ref> ; Conley et al., 2002<ref>Conley, D. J., Markager, S., Andersen, J. et al. (2002) Coastal eutrophication and the Danish National Aquatic Monitoring and Assessment Program. Estuaries, 25, 706–719.[Medline]</ref> ; Rönnberg and Bonsdorff, 2004<ref>Rönnberg, C. and Bonsdorff, E. (2004) Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia, 514, 227–241.[CrossRef][ISI]</ref>). and it has been considered as one of the biggest threats to marinne ecosystem health for decades (Ryther and Dunstan, 1971<ref>Ryther and Dunstan, 1971</ref> ; Nixon, 1995<ref>Nixon, S. W. (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.[ISI]</ref>; Elmgren, 2001<ref>NEED REF</ref> ; Bachmann et al., 2006<ref>Bachmann, R. W., Cloern, J. E., Heckey, R. E. et al. (eds) (2006) Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51 (1, part 2), 351–800.</ref>.
 
 
[[Image:eutrophicationflow.jpg|Source: DHI, 2006 <ref>DHI. (2006) Andersen, J (DHI) and Pawlak, J (MEC), Nutrients and Eutrophication in the Baltic Sea – Effects, Causes, Solutions. Baltic Sea Parliamentary Conference. </ref>
 
]]
 
 
 
Effects of eutrophication on marine ecosystems are well known (DHI, 2006<ref>DHI. (2006) Andersen, J (DHI) and Pawlak, J (MEC), Nutrients and Eutrophication in the Baltic Sea – Effects, Causes, Solutions. Baltic Sea Parliamentary Conference.</ref>):
 
*algal blooms resulting in green water
 
*reduced depth distribution of submerged aquatic vegetation
 
*increased growth of nuisance macroalgae
 
*increased sedimentation, increased oxygen consumption
 
*oxygen depletion in bottom water, and
 
*sometimes dead benthic animals and fish.
 
 
 
[[image:schematic.jpg|400px|frame|centre|Eutrophication schematic. Source: DHI<ref>DHI. (2006) Andersen, J (DHI) and Pawlak, J (MEC), Nutrients and Eutrophication in the Baltic Sea – Effects, Causes, Solutions. Baltic Sea Parliamentary Conference. </ref>]]
 
 
==European Coastal Areas==
 
The main source of nitrogen to European coastal waters is agricultural runoff discharged into the sea via rivers, identified as originating from sources of ammonia evaporation in animal husbandry and partly from fossil fuel combustion in traffic, industry and households (EEA Topic report 7/2001<ref>Ærtebjerg, G. et al., Eutrophication in Europe’s Coastal Waters. Topic Report No 7/2001. European Environment Agency.  (http://reports.eea.europa.eu/topic_report_2001_7/en)</ref>). For phosphorus the major sources are treated and untreated discharges to the sea from households and industry as well as soil erosion (EEA Topic report 7/2001<ref>Ærtebjerg, G. et al., Eutrophication in Europe’s Coastal Waters. Topic Report No 7/2001. European Environment Agency.  (http://reports.eea.europa.eu/topic_report_2001_7/en)</ref>).
 
 
===Baltic Sea in focus===
 
Eutrophication seriously affects the Baltic sea marine environment, resulting in algal blooms, reduced water clarity, oxygen reduction and death of bottom animals. The causes behind this are well known (DHI 2006, <ref>DHI. (2006) Andersen, J (DHI) and Pawlak, J (MEC), Nutrients and Eutrophication in the Baltic Sea – Effects, Causes, Solutions. Baltic Sea Parliamentary Conference.)</ref>: discharges, losses and emissions of nitrogen and phosphorus to the aquatic environment. Reductions of discharges from municipal wastewater treatment plants and industries have been in focus for many years as have losses and emissions of nitrogen compounds from agriculture and traffic.
 
 
 
==Solutions==
 
Nutrient inputs must be reduced to levels that do not put at risk target values for mitigation of eutrophication. Integrated management strategies should enable characterization of all pressures on water bodies in order to develop a coherent approach to deal with the pressures in a cost effective manner (DHI 2006, <ref>DHI. (2006) Andersen, J (DHI) and Pawlak, J (MEC), Nutrients and Eutrophication in the Baltic Sea – Effects, Causes, Solutions. Baltic Sea Parliamentary Conference.</ref>
 
 
==EU Directives:==
 
*EC Urban Waster Water Treatment Directive [http://ec.europa.eu/environment/water/water-urbanwaste/directiv.html]
 
*EC Nitrates Directive [http://ec.europa.eu/environment/water/water-nitrates/directiv.html]
 
*EU Water Framework Directive [http://ec.europa.eu/environment/water/water-framework/index_en.html]
 
*Marine Strategy Directive [http://ec.europa.eu/environment/water/marine.html]
 
 
 
==See also==
 
Wikipedia: Eutrophication article [http://en.wikipedia.org/wiki/Eutrophication]
 
 
 
==External links==
 
*Nutrients and Eutrophication in Danish Marine Waters [http://www2.dmu.dk/1_Viden/2_Miljoe-tilstand/3_vand/4_eutrophication/definition.htm]]
 
*National environment research institute (DK) [http://www.dmu.dk/International/News/Source+apportionment.htm]
 
*BERNET: Baltic Eutrophication Regional Network [[http://www.bernet.org/wm125051]]
 
 
Baltic Sea Parlimentary Conference http://www.BSPC.net
 
BONUS for the future of the Baltic Sea http://www.BONUSportal.org
 
European Environment Agency http://www.EEA.europa.eu
 
HELCOM http://www.HELCOM.fi
 
HELCOM Indicator fact sheets: **[[http://www.helcom.fi/environment2/ifs/ifs2005/en_GB/inflow]] - Indicator Fact Sheet on water exchange
 
**[[http://www.helcom.fi/environment2/ifs/ifs2005/en_GB/winternutriets]]  - Indicator Fact Sheet on winter nutrient concentrations
 
**[[http://www.helcom.fi/environment2/ifs/ifs2005/en_GB/transparency]] - Indicator Fact Sheet on water clarity
 
**[[http://www.helcom.fi/environment2/ifs/ifs2005/en_GB/blooms]] - Indicator Fact Sheet on algal blooms
 
**[[http://www.helcom.fi/environment2/ifs/ifs2005/Chlorophyll-a/en_GB/chlorophyll]]  - Indicator Fact Sheet on chlorophyll-a concentrations
 
**[[http://www.helcom.fi/environment2/ifs/ifs2005/en_GB/oxygen_deepbasins]]  - Indicator Fact Sheet on hydrography and oxygen in the deep basins
 
 
http://www.MARE.su.se – MARE
 
http://www.OSPAR.org – OSPAR
 
http://www.waterforecast.dhi.dk – The Water Forescast
 
http://www.panda.org/about_wwf/where_we_work/europe/what_we_do/baltics/our_work/index.cfm - WWF Baltic Ecoregion Programme
 
  
 
==References==
 
==References==
 
<references/>
 
<references/>
  
 
+
[[Category:Eutrophication]]
 
 
Authorship
 
''02/01/2007, Karen Edelvang (kae@dhigroup.com) Caitlin Pilkington (caitlin.pilkington@gmail.com), DHI Water Environment Health.''
 

Latest revision as of 21:14, 14 December 2024

Definition of Eutrophication:
(1) An increase in the supply of organic matter (Nixon, 1995[1])

(2) A condition in an aquatic ecosystem where high nutrient concentrations stimulate growth of algae which leads to imbalanced functioning of the system (HELCOM 2006[2])
(3) The enrichment of water by nutrients, especially nitrogen and/or phosphorus and organic matter, causing an increased growth of algae and higher forms of plant life to produce an adverse deviation in structure, function and stability of organisms present in the water and to the quality of water concerned, compared to reference conditions (Andersen et al. 2006[3])

(4) The enrichment of water by nutrients causing an accelerated growth of algae and higher forms of plant life to produce an undesirable disturbance to the balance of organisms present in the water and to the quality of the water concerned” (OSPAR 2003[4]
This is the common definition for Eutrophication, other definitions can be discussed in the article


Eutrophication occurs when a limiting factor on the rate of growth and production of primary producers is released, most frequently via an input of inorganic or organic nutrients (Howarth 1988[5]). High primary production boosted by eutrophication usually leads to oxygen depletion caused by decay of organic matter.


Nutrients involved in eutrophication

Nutrients needed in large quantities

  • Nitrogen ([math]N[/math]) is often a limiting nutrient to growth. Most common reactive form is dissolved inorganic nitrogen (DIN) found in marine waters as nitrate ([math]NO_3^-[/math]), nitrite ([math]NO_2^-[/math]) and ammonium ([math]NH_4^+[/math]). Nitrogen also occurs in the largely refractory form of dissolved organic matter (DOM) as dissolved organic nitrogen (DON). Small amounts of nitrogen occur in the not directly usable form of particulate organic matter (POM).
  • Phosphorous ([math]P[/math]) is often a limiting nutrient to growth. Most common reactive form is dissolved inorganic phosphorus (DIP) found as phosphate ([math]PO_4^{3-}[/math]). Phosphorus also occurs in the largely refractory form of dissolved organic matter (DOM) as dissolved organic phosphorus (DOP). Small amounts of phosphorus occur in the not directly usable form of particulate organic matter (POM).
  • Potassium ([math]K[/math])
  • Calcium ([math]Ca[/math])
  • Magnesium ([math]Mg[/math])
  • Sulfur ([math]S[/math])
  • Silicium ([math]Si[/math]), mainly as silicic acid [math]Si(OH)_4[/math] can be a limiting nutrient for diatoms

Nutrients needed in trace amounts

  • Iron ([math]Fe[/math]) can be a limiting nutrient
  • Boron ([math]B[/math])
  • Chlorine ([math]Cl[/math])
  • Manganese ([math]Mn[/math])
  • Zinc ([math]Zn[/math]) can be a limiting nutrient
  • Copper ([math]Cu[/math])
  • Nickel ([math]Ni[/math])
  • Molybdenum ([math]Mo[/math])

Eutrophication indicators

There are no widely applicable indicators of eutrophication due to the high variation in natural conditions and the interaction of multiple factors influencing eutrophication. Often Chlorophyll a ([math]Cl \, a[/math]) is used as indicator of eutrophication, as a proxy for phytoplankton biomass. However, the drawback of using of [math]Cl \, a[/math] as an indicator is that there can be no increase in [math]Cl \, a[/math] after nutrient concentrations have exceeded the threshold beyond which other factors (e.g. light, grazing) are limiting. Additionally, [math]Cl \, a[/math] measures only changes in the abundance of primary producers and cannot indicate any changes in community composition that may occur simultaneously (Jessen et al. 2015[6]).


Articles related to eutrophication

Eutrophication processes

Eutrophication impacts

Eutrophication monitoring

Eutrophication modelling

Eutrophication policy


References

  1. Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219
  2. HELCOM 2006[1]
  3. Andersen, J. H., Schlüter, L. and Ærtebjerg, G. 2006. Coastal eutrophication: recent developments in definitions and implications for monitoring strategies. J. Plankton Res 28(7): 621-628
  4. OSPAR, 2003. In: Strategies of the OSPAR commission for the protection of the marine environment of the north-east Atlantic (reference number: 2003e21)
  5. Howarth, R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Annual Rev. Ecol. Syst. 19: 89–110
  6. Jessen, C., Bednarz, V.N., Rix, L., Teichberg, M. and Wild, C. 2015. Marine Eutrophication. In: Armon, R., Hänninen, O. (eds) Environmental Indicators. Springer, Dordrecht