Index of vulnerability of littorals to oil pollution

From Coastal Wiki
Revision as of 13:07, 9 November 2007 by Bex (talk | contribs) (References)
Jump to: navigation, search

Translated and adapted from Erwann Lagabrielle master thesis, Université de Nantes, France

In this article, basics of the implementation of an index of vulnerability of littorals shall first be described, through a description of the physical and biological impacts of an oil pollution on littorals. In a second part, consequences of an oil pollution on human activities and life will be discussed, and will allow to build a new index of vulnerability which takes into account these social and economics considerations.

Definitions

The capacity of a coast to trap oil from a slick and its remanence are the very bases of the concept of morpho-sedimentary vulnerability. Alongside with the ecological vulnerability of the environment, they define the bio-morpho-sedimentary vulnerability of a littoral, that is the capacity of a coastal ecosystem to totally overcome an oil pollution.

History of the indexes of vulnerability

The Environmental Sensitivity Index (ESI)

The term of sensitivity of littorals in regards with accidental oil slicks was introduced by Hayes (USA) in 1976. The American geomorphologist defined the first index of morpho-sedimentary vulnerability, which was tested on the Lower Cook Inlet coast in Alaska.

His categorization rests on the assumption that, the longer oil remains on a coast (remanence phenomenon), the more sensible it is to oil pollution. The index takes also into account the duration of the period in which oil remains on the coast before the first operation of cleansing. This duration is linked to the morpho-sedimentary attributes of the coast and its exposure to hydrodynamical phenomenons (swell, waves, flows...).

The index goes from 1 to 10 : 10 meaning a maximal vulnerability.

Values of Environmental Sensitivity Index, first version of Hayes - 1976
ESI Values Coast type
1 Exposed rock coast
2 Exposed rock platform
3 Fine sand beach
4 Coarse sand beach
5 Compact and exposed flat beach
6 Sand and gravel / pebbles beach
7 Gravel and pebbles beach
8 Sheltered rock coast
9 Sheltered flat beach
10 Marshlands and mangrove swamps

In 1980, Gundlach and Hayes add biological considerations to this index and define the first bio-morpho-sedimentary index. They use their new categorization on 1/40000 maps where the main biological resources to be protected are drawn. This index is the new Environmental Sensitivity Index (ESI).

Values of Environmental Sensitivity Index, Gundlach and Hayes - 1980
ESI Values Coast type
1 Exposed rock course
2 Exposed rock platform
3 Fine sand beach
4 Coarse sand beach
5 Flat beach with very stirred up sediments
5a Sand and gravel exposed beach
6 Pebbles beach
6a Sheltered beach of sand and rollers
7 Exposed flat beach(average biomass)
8 Sheltered rock coast
9 Sheltered flat beach(high biomass)
10 Marshlands

Since this date, the index has been redefined and completed. Some elements have been resorted, others have been added (especially maritime constructions). Finally, the index describes 10 elements corresponding to 15 subclasses.

Values of Environmental Sensitivity Index - 1994
ESI Values Coast type
1 Exposed rock cliff ; exposed vertical seawall, made of wood, metal or concrete
2 Exposed rock platform or coast ; exposed unstable escarpment behind a rock platform
3 Fine-to-average sand beach ; unstable eroding escarpment
4 Coarse sand beach or heterogeneous sand beach
5 Very coarse sand beach
6A Gravel or pebbles beach
6B Epi
7 Tidal flat exposed beach
8A Sheltered rock coast or sheltered unstable escarpment
8B Sheltered solid infrastructure
9 Sheltered flat beach
10A Sea marshlands
10B Mangrove swamps
10C Fresh water marsh (herbaceous vegetation)
10D Fresh water marsh (woody vegetation)

Berne and d'Ozouville's index

After the Amoco Cadiz accident, Conan and d'Ozouville (1978), then Berne and d'Ozouville (1981) use again the index of vulnerability and adapt it to the North Coast of Brittany in France.

The different types of coasts are sorted according to the extent of the auto-cleansing phenomenon (low or high energy). A new map is drawn from the Saint-Mathieu cap to the Sillon de Talbert where the newly computed index has only been used once in 1982.

Berne and d'Ozouville's ESI index, adapted to North Brittany - 1982
Index Coast type Zone of oil accumulation Remanency
High energy zones 1 Rock headland or coast Oil can't settle because of wave reflection Some weeks
2 Eroding rock platform Higher part of coast Some months
3 Fine sand beach Possible interstratification in sediment, slow migration deep down, emulsion in intersticial water 1 to 2 years
4 Average to coarse sand beach Possible interstratification in sediment, fast migration deep down, emulsion in intersticial water 1 to 3 years
5 Gravel and pebbles beach Fast migration deep down, few or no deposit on the surface 3 to 5 years
Low energy zones 6 Rock coast and eroding platform In rock anfractuosities, rocks covered by a thin slick 3 to 5 years
7 Thin to average sand beach Deep percolation, pollution of subtidal zone by ocean tides (mix thin sable/oil), hardened crust on the surface after one year >5 years
8 Coarse sand and pebbles beach Fast percolation to substratum, creation of asphaltic pavement after one year >5 years
9 Silt Percolation deep down due to digger organisms and intersticial water movements >10 years
10 Marshlands Crust on the surface, sedimentation >10 years

The Impact Reference System of O'Sullivan and Jacques

This tool of classification has been developed by O'Sullivan and Jacques to take into account the effects of oil on the environment (fauna and flora). It summarizes in a table the ecological consequences of an oil slick according to :

  • the fauna and flora associated with the environment,
  • the impacts of oil depending on its nature (toxicity),
  • the geomorphological vulnerability (remanence),
  • the population sensitivity (resiliency).

The coast types are sorted by increasing sensitivity. Data on the effects of an oil pollution on some kinds of sea resources (pelagic stock, aquaculture, coastal agriculture) and some animals (sea mammals, birds, fishes, crustaceans) are also shown.

To refine their classification, O'Sullivan and Jacques first developed a categorization of oils according to their toxicity, their level of evaporation, their solubility, their natural dissemination and their stickiness.

Oil classes
Type of petrol Level of evaporation Solubility Stickiness Toxicity
Light oil High High Null High
Average to heavy oil <50% Average Low to average Variable, depending on composition
Heavy oil <20% Low High Cover and adherence (fauna and flora asphyxiation)
Residual oil Null Very low Very high Cover and adherence (fauna and flora asphyxiation)

Page-Jones' bio-morpho-sedimentary index of vulnerability (1996)

This is the most complete index, which summarizes and confirms the previous ones and adds the ecological parameter to the morpho-sedimentary vulnerability.

Lindsey Page-Jones developed it in 1996 during her master of geography in Brest, France (Tentative d’estimation de la rémanence du pétrole sur les littoraux à la suite d’une pollution accidentelle et contribution à la mise au point d’un indice de vulnérabilité bio-morpho-sédimentaire, with Bernard Fichaut). Rebout and David used it to create the Polmar-Terre map for the French department of Manche.

A validation of the previous indexes

Lindsey Page-Jones made a lot of research on historic oil slicks since 1950. She compared the effective remanency of oil in sediments to the theoretical reminency predicted by the morpho-sedimentary indexes, thus demonstrating the validity of the use of these indexes.

Comparison between theoretical scales of Gundlach-Hayes and Berne-d'Ozouville and observed remanency from the work of Page-Jones - Page-Jones, 1996
Coasts ESI reminency Berne and d'Ozouville Observed remanency from Page-Jones work
Rock coast and exposed headlands 1 Some weeks 1 Some weeks Some weeks to some months
Exposed rock eroding platform 2 Some months 2 Some months Some weeks to some months (up to one year)
Exposed thin sand beach 3 Some months up to one year 3 1 to 2 years 1 to 2 years (more if creation of crust or burying
Exposed average to coarse sand beach . . 4 1 to 3 years 1 to 2 years (more if creation of crust or burying
Coarse sand beach 4 1 to 2 years . . .
Exposed gravel/sand or pebbles beach 5 1 to 2 years (more for sheltered zones) . . 2 years (more if no transformation of buried polluted sediment)
Exposed gravel and pebbles beach 6 1 to 2 years 5 3 to 5 years 1 to 5 years (depending on transformation of sediment)
Exposed tidal flat 7 Some months to one year . . Some months to one year
Rock coast and sheltered eroding platform 8 >5 years 6 3 to 5 years 2 to 5 years (more if sheltered and anfractuosities)
Sheltered thin to average sand beach . . 7 >5 years >5 years (>10 years if creation of crust or burying)
Sheltered coarse sand and stones beach . . 8 >5 years >10 years or more
Sheltered tidal flat or silt 9 >5 years 9 >10 years 2 to 5 years (>10 years if burying)
Marshlands 10 5 to 10 years or more 10 >10 years 15 to 20 years (or more)

The V index : methodology of development

This index, developed by Page-Jones, is the only one which really links morpho-sedimentary vulnerability and ecological vulnerability. Indeed, the previous indexes (ESI and Berne and d'Ozouville's) do not take into account the ecological vulnerability to its full extent : the impacts of an oil slick on ecosystems changed only a little the classification, which mainly lied on the morpho-sedimentary vulnerability.

Parameters

The V index takes into account both morpho-sedimentary and ecological vulnerabilities :

  • the morpho-sedimentary vulnerability relies on the capacity to trap oil and the remanency of petrol ;
  • the ecological vulnerability relies on resiliency and the impact of pollution on the environment. An ecological value is defined which takes into account the prosperity and diversity of endogenous fauna and flora. (Exogenous fauna is not built in because of its mobility.)

Classification of parameters

Ecological vulnerability and morpho-sedimentary vulnerability have been chosen to have the same importance in the final value.

Remanency takes precedent on the capacity of oil to be trapped, because intervention policies have to concentrate on the beaches where oil is bound to stay the longest (where the remanency is higher).

Calculation

Three parameters are considered in the following calculus :

  • R : remanency
  • K : capacity to trap oil
  • E : ecological sensibility (including impact and resiliency)

Each of those parameters can take three values :

  • 1 : low value
  • 2 : average value
  • 3 : high value.

Although this choice may seem quite simplistic, it proves to be sufficient and consistent.

Furthermore, each parameter is balanced by a coefficient x, y or z (respectively). [math] V = f(R,K,E) = xR + yK + zE + Q [/math] where Q is a constante.

The last paragraph on the classification of parameters make us add some constraints :

  • ecological vulnerability and morpho-sedimentary vulnerability have to have the same weight

[math] x + y = z [/math]

  • remanency is twice more important to the capacity to trap oil

[math] x = 2y [/math]

Moreover, we choose the index to take values between 1 and 13. (The number of classes should be limited.) Hence we deduce the following system : [math]\left\{ \begin{matrix} x + y & = & z \\ x & = & 2y \\ x + y + z + Q & = & 1 \\ 3x + 3y + 3z + Q & = & 13 \\ \end{matrix} \right. [/math]

Hence, [math]\left\{ \begin{matrix} x & = & 2 \\ y & = & 1 \\ z & = & 3 \\ Q & = & -5 \\ \end{matrix} \right. [/math]

And [math] V = f(R,K,E) = 2R + K + 3E - 5 [/math]

[math]V[/math] is the bio-morpho-sedimentary vulnerability index of a beach part (characterized by an oil trapping capacity, a remanency of petrol, and an ecological sensitivity) related to oil pollutions.

This 13-values index may not be considered as an extensive parameter : a beach where V=5 is not twice less sensitive than a beach where V=10. It only allows a relative sorting. The main advantage of this index is that it does not impose a fixed sorting : each user can adapt it to its own needs.

Example : sand and gravel exposed beach

It has an average remanency and a coefficient of 2 is chosen (3 to 5 years according to Berne and d'Ozouville). However, its capacity to trap oil is high and it is chosen to give a value of 3 to this coefficient. The ecological vulnerability is low, because of its exposition and its low biological wealth. This coefficient will thus have a value of 1. The bio-morpho-sedimentary vulnerability index is :

[math] V = f(R,K,E) = 2R + K + 3E - 5 = 2*2 + 3 + 3*1 - 5 = 5 [/math]

This value (5) puts the bio-morpho-sedimentary vulnerability of a sand and gravel exposed beach in the middle of the sorting.

Values of R, K, E according to the type of coast

As soon as the question of the application is adressed, the problem of the choice of R, K and E values according to the type of beach also has to be solved. This may be done thanks to the empiric studies presented in the first paragraph :

  • remanency R decreases with the energy level : its value is 1 for an exposed sector, and 3 for a sheltered beach ;
  • oil-trapping capacity K is linked to the geology of the substratum. It increases with the granulometry of the unconsolidated substratum, from 1 for a rocky sector to 3 for coarse sediment. For sheltered marshlands, we choose a value of k=3 because they have a high capacity to trap oil. Nevertheless, this oil-trapping capacity decreases when the water content raises ;
  • ecological vulnerability is more difficult to evaluate because of the lack of knowledge on this topic. We consider it as minimal for exposed beach (E=1), maximal for marshlands and sheltered tidal flats (E=3).

The choice of the values of these parameters depends on local conditions.

Application

Conclusion

References