Possible consequences of eutrophication

From Coastal Wiki
Revision as of 10:46, 19 April 2013 by Carolienk (talk | contribs) (Human health impacts)
Jump to: navigation, search
Category:Revision

Introduction

Enhanced plant production and improved fish yields are sometimes described as positive impacts of eutrophication, especially in countries where fish and other aquatic organisms are a significant source of food. However detrimental ecological impacts can in turn have other negative consequences and impacts which are described below. Essentially the entire aquatic ecosystem changes with eutrophication.

Ecological impacts

Increased biomass of phytoplankton resulting in algal blooms

Toxic or inedible phytoplankton species (harmful algal blooms)

Increased in blooms of gelatinous zooplankton

Increased biomass of macroalgae

Decreases in water transparency (increased turbidity)

Dissolved oxygen depletion or hypoxia resulting in increased incidences of fish kills and / or dead benthic animals

Species biodiversity decreases and the dominant biota changes

Human health impacts

Harmful algal bloom species have the capacity to produce toxins dangerous to humans. Algal toxins are observed in marine ecosystems where they can accumulate in shellfish and more generally in seafood reaching dangerous levels for human as well as animal health. Examples include paralytic, neurotoxic and diarrhoeic shellfish poisoning. Several algal species able of producing toxins harmful to human or marine life have been identified in European coastal waters. The table gives an overview of some species that are regularly observed and represent a risk for seafood consumers.

Disease Symptoms Species Carriers
Amnesic shellfish poisoning (ASP) Mental confusion and memory loss, disorientation and sometimes coma Diatoms of the genus Nitzschia Shellfish (mussels)
Neurotoxic shellfish poisoning (NSP) Muscular paralysis, state of shock and sometimes death Genus Gymnodinium Oysters, clams and crustaceans
Venerupin shellfish poisoning (VSP) Gastrointestinal, nervous and hemorrhagic, hepatic symptoms and in extreme causes delirium and hepatic coma Genus Prorocentrum Oysters and clams
Diarrhoeic shellfish poisoning (DSP) Gastrointestinal symptoms (diarrhoea, vomiting and abdominal pain) Genus Dinophysis and Prorocentrum Filtering shellfish (oysters, mussels and clams)
Paralytic shellfish poisoning (PSP) Muscular paralysis, difficulty in breathing, shock and in extreme causes death by respiratory arrest Genus Alexandrium and Gymnodinium Oysters, mussels, crustacean and fish

Other marine mammals can be vectors for toxins, as in the case of ciguatera, where it is typically predator fish whose flesh is contaminated with the toxins originally produced by dinoflagellates and then poison humans. Symptoms include gastrointestinal and neurological effects.

Socio-economic impacts

Nearly all of the above described impacts have a direct or indirect socio-economic impact.

References

  1. Eutrophication and health. European Commission (2002). Office for Official Publications of the European Communities: Luxembourg. ISBN 92-894-4413-4.28 pp.
  2. The National Eutrophication monitoring Programme Implementation Manual (Murray et al., 2002).