Difference between revisions of "Template:This weeks featured article"

From Coastal Wiki
Jump to: navigation, search
(Marine Plankton)
(Application and use of underwater video)
Line 7: Line 7:
 
and whether the seabed is damaged or not by it (Vorbeg, 2000<ref name="Vorberg">Vorberg, R. (2000); Effects of shrimp fisheries on reefs of Sabellaria spinulosa (Polychaeta); ICES Journal of Marine Science; 57 pp. 1416–1420</ref>; Linnanne et al, 2000<ref name="Linnane">Linnane A., Ball B., Munday B., van Marlen B., Bergman M., Fonteyne R. (2000): A review of potential techniques to reduce the environmental impact of demersal trawl; Irish Fisheries Investigation Series Publications (New Series) No. 7; ISSN0578-7467</ref>) even in combination with a water sampler (Dounas, 2006<ref name="Dounas">Dounas, C. G. (2006); A new apparatus for the direct measurement of the effects of otter trawling on benthic nutrient releases; Journal of Experimental Marine Biology and Ecology; 339, pp. 251 – 259</ref>) and to separate living [http://en.wikipedia.org/wiki/Coral corals] from dead (Harris et al, 2004<ref name="Harris">Harris, P. T., Heap, A. D., Wassenberg, T., Passlow, V. (2004); Submerged coral reefs in the Gulf of Carpentaria, Australia; Marine Geology; 207:1-4, pp. 185-191</ref>.)
 
and whether the seabed is damaged or not by it (Vorbeg, 2000<ref name="Vorberg">Vorberg, R. (2000); Effects of shrimp fisheries on reefs of Sabellaria spinulosa (Polychaeta); ICES Journal of Marine Science; 57 pp. 1416–1420</ref>; Linnanne et al, 2000<ref name="Linnane">Linnane A., Ball B., Munday B., van Marlen B., Bergman M., Fonteyne R. (2000): A review of potential techniques to reduce the environmental impact of demersal trawl; Irish Fisheries Investigation Series Publications (New Series) No. 7; ISSN0578-7467</ref>) even in combination with a water sampler (Dounas, 2006<ref name="Dounas">Dounas, C. G. (2006); A new apparatus for the direct measurement of the effects of otter trawling on benthic nutrient releases; Journal of Experimental Marine Biology and Ecology; 339, pp. 251 – 259</ref>) and to separate living [http://en.wikipedia.org/wiki/Coral corals] from dead (Harris et al, 2004<ref name="Harris">Harris, P. T., Heap, A. D., Wassenberg, T., Passlow, V. (2004); Submerged coral reefs in the Gulf of Carpentaria, Australia; Marine Geology; 207:1-4, pp. 185-191</ref>.)
  
It has also been used for [http://en.wikipedia.org/wiki/Marine_geology marine geology] (Field et al, 1981<ref name="Field">Field, M. E., Nelson, C. H., Cacchione, D. A., Drake, D. E. (1981); Sand waves on an epicontinental shelf: Northern Bering Sea; Marine Geology; 42:1-4, pp. 233-258</ref>), [http://en.wikipedia.org/wiki/Sediment sediment] studies
+
It has also been used for [http://en.wikipedia.org/wiki/Marine_geology marine geology]
(Osborne & Greenwood (1991)<ref name="Osborne">Osborne, P. D., Greenwood B. (1991); Frequency dependent cross-shore suspended sediment transport. 2. A barred shoreface; Marine Geology; 106, pp. 25-51 </ref>), [http://en.wikipedia.org/wiki/Tidal tidal] microtopography (Lund-Hansen et al, 2004<ref name="LundHansen">Lund-Hansen L., Larsen E., Jensen K., Mouritsen K., Christiansen C., Andersen T., Vølund G. (2004); A new video and digital camera system for studies of the dynamics of microtopographic features on tidal flats; Marine Georesources and Geotechnology; 22: 1-2, pp. 115-122</ref>), [http://en.wikipedia.org/wiki/Bridge bridge] (DeVault, 2000<ref name="DeVault">DeVault, J.E. (2000); Robotic system for underwater inspection of bridge piers; Instrumentation & Measurement Magazine, IEEE; 3:3, pp. 32-37</ref>) and [http://en.wikipedia.org/wiki/Pipeline_transport pipeline] (Gracias & Santos-Victor, 2000<ref name="Gracias">Gracias, N., Santos-Victor, J. (2000); Underwater Video Mosaics as Visual Navigation Maps; Computer Vision And Image Understanding; 79:1, pp. 66-91</ref>)
 
inspections, sports (Blanksby et al, 2004<ref name="Blanksby">Blanksby, B. A., Skender, S., Elliott, B. C., McElroy, K., Landers, G. J. (2004); An Analysis of the Rollover Backstroke Turn by Age-Group Swimmers; Sports Biomechanics; 3:1, pp. 1-14</ref>)
 
, [http://en.wikipedia.org/wiki/Marine_archaeology marine archaeology] (Coleman et al, 2000<ref name="Coleman">Coleman D. F., Newman J. B., Ballard R. D (2000); Design and implementation of advanced underwater imaging systems for deep sea marine archaeological surveys; OCEANS 2000 MTS/IEEE Conference and Exhibition;1, pp. 661-665</ref>), entertainment, education and more.
 

Revision as of 13:53, 18 November 2009

Application and use of underwater video

Figure 1: Louis Boutan, the first published underwater photographer pioneered not only photography, but diving equipment in general.
This article is about the history and application of underwater video. Related articles are underwater video systems, which is about equipment of underwater video systems; and video technology, which deals with video as such. Video imaging in wells and boreholes is similar to underwater video, but puts constraints on the shape and size of the equipment, as does for example underwater video in sewer pipes, nuclear power plants or fish tanks.

From the start, underwater video has been used for marine biological studies (see also Figure 3). It may be abundance (Smith & Papadopoulou, 2003[1]; Moser et al, 1998[2]) behavioural studies (Grémillet et al, 2006[3]; Esteve, 2007[4]) habitat mapping (Ryan et al, 2007[5]; Abdo et al, 2004[6]) studies of fishing and trawling (Zhou & Shirley (1997[7]; Cooper and Hickey, 1987[8]) and whether the seabed is damaged or not by it (Vorbeg, 2000[9]; Linnanne et al, 2000[10]) even in combination with a water sampler (Dounas, 2006[11]) and to separate living corals from dead (Harris et al, 2004[12].)

It has also been used for marine geology
  1. Smith, C. J., Papadopoulou, K.-N. (2003); Burrow density and stock size fluctuations of Nephrops norvegicus in a semi-enclosed bay; ICES Journal of Marine Science; 60, pp. 798–805
  2. Moser, M. L., Auster P. J., Bichy, J. B. (1998); Effects of mat morphology on large Sargassum-associated fishes: observations from a remotely operated vehicle (ROV) and free-floating video camcorders; Environmental Biology of Fishes; 51, pp. 391–398
  3. Grémillet, D., Enstipp, M. R., Boudiffa, M., Liu, H. (2006); Do cormorants injure fish without eating them? An underwater video study; Marine Biology; 148, pp. 1081–1087
  4. Esteve, M. (2007);Two examples of fixed behavioural patterns in salmonines: female false spawning and male digging; Journal of Ethology; 25:1, pp. 63-70
  5. Ryan, D. A., Brooke, B. P., Collins, L. B., Kendrick, G. A., Baxter, K. J., Bickers, A. N., Siwabessy, P. J. W., Pattiaratchi, C. B. (2007); The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia; Estuarine, Coastal and Shelf Science; 72:1-2, pp. 379-386
  6. Abdo, D., Burgess, G., Coleman, K. (2004); Surveys of benthic reef communities using underwater video; Long-term monitoring of the great Barrier reef Standard Operational Procedure Number 2, 3rd Revised Edition; Australian Institute of Marine Science, Townsville 2004; ISBN0-64232231
  7. Zhou, S. Shirley T. C. (1997); Performance of two red king crab pot designs; Canadian Journal of Fisheries and Aquatic Sciences / Journal canadien des sciences halieutiques et aquatiques; 54, pp 1858–1864
  8. Cooper, C., Hickey, W. (1987); Selectivity experiments with square mesh cod-ends on haddock and cod; IEEE OCEANS; 19, pp. 608-613
  9. Vorberg, R. (2000); Effects of shrimp fisheries on reefs of Sabellaria spinulosa (Polychaeta); ICES Journal of Marine Science; 57 pp. 1416–1420
  10. Linnane A., Ball B., Munday B., van Marlen B., Bergman M., Fonteyne R. (2000): A review of potential techniques to reduce the environmental impact of demersal trawl; Irish Fisheries Investigation Series Publications (New Series) No. 7; ISSN0578-7467
  11. Dounas, C. G. (2006); A new apparatus for the direct measurement of the effects of otter trawling on benthic nutrient releases; Journal of Experimental Marine Biology and Ecology; 339, pp. 251 – 259
  12. Harris, P. T., Heap, A. D., Wassenberg, T., Passlow, V. (2004); Submerged coral reefs in the Gulf of Carpentaria, Australia; Marine Geology; 207:1-4, pp. 185-191