Difference between revisions of "Pollution and scavengers"

From Coastal Wiki
Jump to: navigation, search
(New page: thumb|right|200px| <div style="text-align: center;"> ''Homarus gammarus'' © Vincent Zintzen </div> Decomposers feed on decaying organic matter, which can ...)
 
 
(22 intermediate revisions by one other user not shown)
Line 1: Line 1:
[[Image:Homarus-gammarus.jpg|thumb|right|200px| <div style="text-align: center;">
+
[[Image:wolhandkrab.jpg|thumb|right|200px| <div style="text-align: center;">
''Homarus gammarus'' © Vincent Zintzen
+
Wolhandcrab © Misjel Decleer
 
</div>]]
 
</div>]]
  
Decomposers feed on decaying organic matter, which can ofter contain high concentrations of pollutants. <ref>Voorspoels, S.; Covaci, A.; Maervoet, J.; De Meester, I.; Schepens, P. (2004). Levels and profiles of PCBs and OCPs in marine benthic species from the Belgian North Sea and the Western Scheldt Estuary. Mar. Pollut. Bull. 49(5-6): 393-404</ref>
+
Decomposers typically live on the sea floor and include species like crabs, hermit crabs, whelks and starfish.<ref> Moore P.G., Howarth J., 1996 Foraging by marine scavengers: Effects of relatedness, bait damage and hunger. Journal of Sea Research, Volume 36, Issues 3-4, P. 267-273 </ref> They feed primary on decaying organic matter, which can often contain high concentrations of [[pollutant|pollutants]]. <ref>Voorspoels, S.; Covaci, A.; Maervoet, J.; De Meester, I.; Schepens, P. (2004). Levels and profiles of PCBs and OCPs in marine benthic species from the Belgian North Sea and the Western Scheldt Estuary. Mar. Pollut. Bull. 49(5-6): 393-404</ref>
This causes decomposers, like crabs, to have a higher pollutant contents than other [[pollution and zoobenthos|zoobenthos]].
+
Therefore, decomposers tend to have higher pollutant contents than other [[pollution and zoobenthos|zoobenthos]]. This although they both (unlike [[pollution and marine mammals|marine mammals]] and [[pollution and sea birds|sea birds]]) also acquire a large part of their pollutants through direct contact with the water; while acquiring oxygen from the water, pollutants can be [[adsorption|adsorbed]] as well.
 
 
Crabs, especially larvae, appear to be vulnerable to pesticides <ref>Levinton, J.S. (2001). Marine biology: function, biodiversity, ecology. 2nd Edition. Oxford University Press: New York, NY (USA). ISBN 0-19-514172-5. xi, 515, col. pl. pp.</ref> So did the crab fishery of Chesapeake Bay in the 1960s collapse due to a pesticide called keptone.  
 
  
 +
Crabs, especially their larvae, appear to be vulnerable to pesticides<ref>Levinton, J.S. (2001). Marine biology: function, biodiversity, ecology. 2nd Edition. Oxford University Press: New York, NY (USA). ISBN 0-19-514172-5. xi, 515, col. pl. pp.</ref>, which resulted during the 1960s in the collapse of the Chesapeake Bay crab fishery, due to a pesticide called keptone.
  
 +
Below you can find some links to Belgian case studies on ecotoxicology in marine scavengers.
  
 
== Case studies ==
 
== Case studies ==
  
 +
Case study 1: [[Common starfish can act as a bioindicator for heavy metal pollution]]<ref>Temara, A.; Skei, J.M.; Gillan, D.; Warnau, M.; Jangoux, M.; Dubois, Ph. (1998). Validation of the asteroid Asterias rubens (Echinodermata) as a bioindicator of spatial and temporal trends of Pb, Cd, and Zn contamination in the field. Mar. Environ. Res. 45(4-5): 341-356</ref>
  
Case study 1: [[Flame retardants organotin compounds and surfactants in opossum shrimps of the Scheldt estuary.]]<ref>Verslycke, T.; Vethaak, A.D.; Arijs, K.; Janssen, C.R. (2004). Flame retardants, surfactants and organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). Environ. Poll. 136(1): 19-31</ref>
 
 
Case study 2: [[Effects of endocrine disrupting compounds on embryonic development of opossum shrimps.]]G<ref>hekiere, A.; Fockedey, N.; Verslycke, T.; Vincx, M.; Janssen, C.R. (2007). Marsupial development in the mysid Neomysis integer (Crustacea: Mysidacea) to evaluate the effects of endocrine-disrupting chemicals. Ecotoxicol. Environ. Saf. 66(1): 9-15</ref>
 
  
 
==References==
 
==References==
 
<references/>
 
<references/>
  
 +
{{author
 +
|AuthorID=19826
 +
|AuthorFullName=Daphnis De Pooter
 +
|AuthorName=Daphnisd}}
  
[[Category:North Sea]]
+
[[Category:Ecotoxicology]]
 
[[Category:Coastal and marine pollution]]
 
[[Category:Coastal and marine pollution]]

Latest revision as of 17:44, 5 November 2019

Wolhandcrab © Misjel Decleer

Decomposers typically live on the sea floor and include species like crabs, hermit crabs, whelks and starfish.[1] They feed primary on decaying organic matter, which can often contain high concentrations of pollutants. [2] Therefore, decomposers tend to have higher pollutant contents than other zoobenthos. This although they both (unlike marine mammals and sea birds) also acquire a large part of their pollutants through direct contact with the water; while acquiring oxygen from the water, pollutants can be adsorbed as well.

Crabs, especially their larvae, appear to be vulnerable to pesticides[3], which resulted during the 1960s in the collapse of the Chesapeake Bay crab fishery, due to a pesticide called keptone.

Below you can find some links to Belgian case studies on ecotoxicology in marine scavengers.

Case studies

Case study 1: Common starfish can act as a bioindicator for heavy metal pollution[4]


References

  1. Moore P.G., Howarth J., 1996 Foraging by marine scavengers: Effects of relatedness, bait damage and hunger. Journal of Sea Research, Volume 36, Issues 3-4, P. 267-273
  2. Voorspoels, S.; Covaci, A.; Maervoet, J.; De Meester, I.; Schepens, P. (2004). Levels and profiles of PCBs and OCPs in marine benthic species from the Belgian North Sea and the Western Scheldt Estuary. Mar. Pollut. Bull. 49(5-6): 393-404
  3. Levinton, J.S. (2001). Marine biology: function, biodiversity, ecology. 2nd Edition. Oxford University Press: New York, NY (USA). ISBN 0-19-514172-5. xi, 515, col. pl. pp.
  4. Temara, A.; Skei, J.M.; Gillan, D.; Warnau, M.; Jangoux, M.; Dubois, Ph. (1998). Validation of the asteroid Asterias rubens (Echinodermata) as a bioindicator of spatial and temporal trends of Pb, Cd, and Zn contamination in the field. Mar. Environ. Res. 45(4-5): 341-356
The main author of this article is Daphnis De Pooter
Please note that others may also have edited the contents of this article.

Citation: Daphnis De Pooter (2019): Pollution and scavengers. Available from http://www.coastalwiki.org/wiki/Pollution_and_scavengers [accessed on 22-11-2024]