Difference between revisions of "In situ measurement of wet bulk density"

From Coastal Wiki
Jump to: navigation, search
(Summaries of the manual)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
This article is a summary of chapter 9 of the [[Manual Sediment Transport Measurements in Rivers, Estuaries and Coastal Seas]]<ref>Rijn, L. C. van (1986). ''Manual sediment transport measurements''. Delft, The Netherlands: Delft Hydraulics Laboratory</ref>. This  article describes how the the mass of the water-sediment mixture per unit volume (wet bulk density) can be measured [[in situ]] by mechanical, acoustic or nuclear radiation [[sensor|sensors]].
 
This article is a summary of chapter 9 of the [[Manual Sediment Transport Measurements in Rivers, Estuaries and Coastal Seas]]<ref>Rijn, L. C. van (1986). ''Manual sediment transport measurements''. Delft, The Netherlands: Delft Hydraulics Laboratory</ref>. This  article describes how the the mass of the water-sediment mixture per unit volume (wet bulk density) can be measured [[in situ]] by mechanical, acoustic or nuclear radiation [[sensor|sensors]].
  
==General aspects==
+
==Introduction==
 +
[[image:chapter9_1A.jpg|thumb|300px|Figure 1: In-situ nuclear bulk density profile through stationary suspension showing layered structure and comparison with 30kHz echo-sounder.]]
 
In deposition and navigation depth studies of muddy areas the wet (bulk) density defined as the mass of the water-sediment mixture per unit volume is an important parameter.
 
In deposition and navigation depth studies of muddy areas the wet (bulk) density defined as the mass of the water-sediment mixture per unit volume is an important parameter.
  
The position of the surface of consolidated mud layers can be determined by means of echo-sounding instruments. Good penetration can be obtained with 30 kHz-instruments (see Figure 1A in chapter 9 of the manual). Higher frequencies (210 KHz) do not have sufficient energy to penetrate into the bed.
+
The position of the surface of consolidated mud layers can be determined by means of echo-sounding instruments. Good penetration can be obtained with 30 kHz-instruments (see Figure 1). Higher frequencies (210 KHz) do not have sufficient energy to penetrate into the bed.
  
Various methods are available to determine the wet bulk density: mechanical core sampler, acoustic probe, nuclear radiation probe, electric conductivity probe, vibration transducer probe, and pressure transducer probe.
+
Various methods are available to determine the wet bulk density: mechanical core sampler, acoustic probe, nuclear radiation probe, electric conductivity probe, vibration transducer probe, and pressure transducer probe. Electric conductivity probes and pressure transducer probes are not generally applicable. Electric conductivity probes are very sensitive to the fluid salinity which should be known beforehand. Pressure and vibration transducer probes can only be used in unconsolidated fluid muds (low density < 1200 kg/m3).
Electric conductivity probes and pressure transducer probes are not generally applicable. Electric conductivity probes are very sensitive to the fluid salinity which should be known beforehand. Pressure and vibration transducer probes can only be used in unconsolidated fluid muds (low density < 1200 kg/m3).
 
  
==Mechanical core sampler==
+
==Sampling methods==
A basic requirement is undisturbed sampling of bed material.
 
  
Various mechanical core-samplers are available to take undisturbed bed material samples of the surface layers (upper 0.5 m of the bed). Most samplers can only be used during low velocity conditions to ensure vertical penetration of the bed.
+
===Mechanical core sampler===
 +
A basic requirement is undisturbed sampling of bed material. Various mechanical core-samplers are available to take undisturbed bed material samples of the surface layers (upper 0.5 m of the bed). Most samplers can only be used during low velocity conditions to ensure vertical penetration of the bed.
  
After sampling, it is common practice to make slices by a machined ring of the same internal diameter as the core. The core content is extruded into the ring until it is full of the water-sediment mixture. A thin plate is then introduced between the ring and the core to isolate the sample.
+
After sampling, it is common practice to make slices by a machined ring of the same internal diameter as the [[core]]. The [[core]] content is extruded into the ring until it is full of the water-sediment mixture. A thin plate is then introduced between the ring and the [[core]] to isolate the sample.
  
As the core diameter is known and fixed and the slice thickness is fixed by the ring, the volume can be calculated. After weighing (and drying) of the sample, the wet and dry density can be determined.
+
As the [[core]] diameter is known and fixed and the slice thickness is fixed by the ring, the volume can be calculated. After weighing (and drying) of the sample, the wet and dry density can be determined.
  
==Acoustic sensor==
+
===Acoustic sensor===
The principle is based on measuring the attenuation of the intensity of monochromatic ultra-sonic waves through the (fluid) mud layer.
+
The principle of acoustic [[sensor|senors]] is based on measuring the attenuation of the intensity of monochromatic ultra-sonic waves through the (fluid) mud layer. See also [[General principles of optical and acoustical instruments]].
  
==Nuclear radiation sensor==
+
===Nuclear radiation sensor===
The principle is based on measuring the attenuation or scattering of the radiation intensity through a water-sediment mixture.
+
The principle of a Nuclear radiation [[sensor]] is based on measuring the attenuation or scattering of the radiation intensity through a water-sediment mixture.
  
 
==See also==
 
==See also==
Line 41: Line 41:
 
===Other internal links===
 
===Other internal links===
 
* [[Instruments and sensors to measure environmental parameters]]
 
* [[Instruments and sensors to measure environmental parameters]]
 +
* [[Acoustic point sensors (ASTM, UHCM, ADV)]]
 +
* [[Acoustic backscatter profiling sensors (ABS)]]
 +
* [[pump samplers]]
 +
* [[Bottle and trap samplers]]
 +
  
===External links===
 
* [http://www.wldelft.nl/rnd/intro/fields/morphology/pdf/H9_In-situ_measurement_of_wet_bulk_density.pdf Manual Chapter 9: In-situ measurement of wet bulk density (pdf, 1,1 Mb)]
 
  
 
==References==
 
==References==
Line 58: Line 61:
 
|AuthorName=Robertihans}}
 
|AuthorName=Robertihans}}
  
[[Category:Theme_9]]
+
[[Category:Coastal and marine observation and monitoring]]
[[Category:Manual sediment transport measurements]]
+
[[Category:Observation of physical parameters]]
[[Category:Techniques and methods in coastal management]]
 
[[Category:Geological processes, soil and minerals]]
 
[[Category:Geomorphological processes and natural coastal features]]
 

Latest revision as of 13:46, 19 August 2020

This article is a summary of chapter 9 of the Manual Sediment Transport Measurements in Rivers, Estuaries and Coastal Seas[1]. This article describes how the the mass of the water-sediment mixture per unit volume (wet bulk density) can be measured in situ by mechanical, acoustic or nuclear radiation sensors.

Introduction

Figure 1: In-situ nuclear bulk density profile through stationary suspension showing layered structure and comparison with 30kHz echo-sounder.

In deposition and navigation depth studies of muddy areas the wet (bulk) density defined as the mass of the water-sediment mixture per unit volume is an important parameter.

The position of the surface of consolidated mud layers can be determined by means of echo-sounding instruments. Good penetration can be obtained with 30 kHz-instruments (see Figure 1). Higher frequencies (210 KHz) do not have sufficient energy to penetrate into the bed.

Various methods are available to determine the wet bulk density: mechanical core sampler, acoustic probe, nuclear radiation probe, electric conductivity probe, vibration transducer probe, and pressure transducer probe. Electric conductivity probes and pressure transducer probes are not generally applicable. Electric conductivity probes are very sensitive to the fluid salinity which should be known beforehand. Pressure and vibration transducer probes can only be used in unconsolidated fluid muds (low density < 1200 kg/m3).

Sampling methods

Mechanical core sampler

A basic requirement is undisturbed sampling of bed material. Various mechanical core-samplers are available to take undisturbed bed material samples of the surface layers (upper 0.5 m of the bed). Most samplers can only be used during low velocity conditions to ensure vertical penetration of the bed.

After sampling, it is common practice to make slices by a machined ring of the same internal diameter as the core. The core content is extruded into the ring until it is full of the water-sediment mixture. A thin plate is then introduced between the ring and the core to isolate the sample.

As the core diameter is known and fixed and the slice thickness is fixed by the ring, the volume can be calculated. After weighing (and drying) of the sample, the wet and dry density can be determined.

Acoustic sensor

The principle of acoustic senors is based on measuring the attenuation of the intensity of monochromatic ultra-sonic waves through the (fluid) mud layer. See also General principles of optical and acoustical instruments.

Nuclear radiation sensor

The principle of a Nuclear radiation sensor is based on measuring the attenuation or scattering of the radiation intensity through a water-sediment mixture.

See also

Summaries of the manual

Other internal links


References

  1. Rijn, L. C. van (1986). Manual sediment transport measurements. Delft, The Netherlands: Delft Hydraulics Laboratory
The main author of this article is Rijn, Leo van
Please note that others may also have edited the contents of this article.

Citation: Rijn, Leo van (2020): In situ measurement of wet bulk density. Available from http://www.coastalwiki.org/wiki/In_situ_measurement_of_wet_bulk_density [accessed on 21-11-2024]


The main author of this article is Roberti, Hans
Please note that others may also have edited the contents of this article.

Citation: Roberti, Hans (2020): In situ measurement of wet bulk density. Available from http://www.coastalwiki.org/wiki/In_situ_measurement_of_wet_bulk_density [accessed on 21-11-2024]