Difference between revisions of "Floating breakwaters"
Line 17: | Line 17: | ||
The performance of a floating breakwater depends on the strongly non-linear interaction of the incident wave (that may partially overtop the module and is in general short-crested and oblique) with the structure dynamics. The interaction becomes complicated by the forces induced by the mooring system and the connections between the modules. Accurate design is necessarily based on the combination of numerical and physical models. | The performance of a floating breakwater depends on the strongly non-linear interaction of the incident wave (that may partially overtop the module and is in general short-crested and oblique) with the structure dynamics. The interaction becomes complicated by the forces induced by the mooring system and the connections between the modules. Accurate design is necessarily based on the combination of numerical and physical models. | ||
− | == | + | ==Types of breakwaters== |
Floating breakwaters are commonly divided into four general categories: | Floating breakwaters are commonly divided into four general categories: | ||
− | # | + | # Box |
− | # | + | # Pontoon |
− | # | + | # Mat |
− | # | + | # Tethered float. |
− | For each category, some types of floating breakwaters are shown in Figures 1 - | + | For each category, some types of floating breakwaters are shown in Figures 1 - 5. The first three types have been much widely investigated by means of physical models and prototype experience, than the last one. Next subsections describes the use of the different types of breakwaters in practice. |
− | [[Image:FBimage002.JPG|450px|thumb| | + | ===Box breakwaters=== |
− | + | [[Image:FBimage002.JPG|450px|thumb|right|Figure 1 Category: Box]] | |
− | + | Box type breakwaters are used most frequently (see also Figure 2). Reinforced concrete modules are either empty inside or, more frequently, have a core of light material (e.g. polystyrene). In the former case the risk of sinking of the structure is not negligible. Usually dimensions are limited to a width of a few meters. | |
− | |||
− | |||
− | |||
− | Box type breakwaters are used most frequently (Figure | ||
− | |||
− | Reinforced concrete modules are either empty inside or, more frequently, have a core of light material (e.g. polystyrene). In the former case the risk of sinking of the structure is not negligible. | ||
− | |||
− | Usually dimensions are limited to a width of a few meters. | ||
− | Connections are either flexible, allowing preferably only the roll along the breakwater axis, or pre or post tensioned, to make them act as a single unit. In the latter case the efficiency is higher, but the forces between modules are also higher. | + | Connections are either flexible, allowing preferably only the roll along the breakwater axis, or pre or post tensioned, to make them act as a single unit. In the latter case the efficiency is higher, but the forces between modules are also higher. The modular system as applied and the mooring system are primary points of concern for this kind of structures. |
− | The modular system as applied and the mooring system are primary points of concern for this kind of structures. | ||
Large breakwaters are frequently built with used barges, ballasted to the desired draft with sand or rock. | Large breakwaters are frequently built with used barges, ballasted to the desired draft with sand or rock. | ||
− | Pontoon types are effective since the overall width can be of the order of half the wavelength. In this case the expected attenuation of the wave height is significant. | + | [[Image:FBimage006.JPG|450px|thumb|right|Figure 2 Example of floating breakwater (Fezzano,SP-Italy; courtesy of INGEMAR srl)]] |
+ | |||
+ | ===Pontoon breakwaters=== | ||
+ | Pontoon types are effective since the overall width can be of the order of half the wavelength. In this case the expected attenuation of the wave height is significant. See also Figure 3. | ||
+ | [[Image:FBimage003.JPG|450px|thumb|right|Figure 3 Category: Pontoon]] | ||
+ | ===Mat breakwaters=== | ||
Within the mat category, the most used are made with tires. Although less effective, they have a low cost, they can be removed more easily, they can be constructed with unskilled labour and minimal equipment, they are subjected to lower anchor loads, they reflect less and they dissipate relatively more wave energy. | Within the mat category, the most used are made with tires. Although less effective, they have a low cost, they can be removed more easily, they can be constructed with unskilled labour and minimal equipment, they are subjected to lower anchor loads, they reflect less and they dissipate relatively more wave energy. | ||
+ | [[Image:FBimage004.JPG|450px|thumb|right|Figure 4 Category: Mat]] | ||
− | Tethered float types are seldom used. | + | ===Tethered float breakwaters=== |
− | [[Image: | + | Tethered float types are seldom used. A schematization is provided in figure 5. |
+ | [[Image:FBimage005.JPG|450px|thumb|right|Figure 5 Category: Tethered Float]] | ||
==See also== | ==See also== |
Revision as of 14:21, 19 November 2007
This article provides some basic insights in the application of floating breakwaters. Floating breakwaters aim to protect against coastal erosion.
Contents
Positive points
Floating breakwaters represent an alternative solution to protect an area from wave attack, compared to conventional fixed breakwaters. It can be effective in coastal areas with mild wave environment conditions. Therefore, they have been increasingly used aiming at protecting small craft harbours or marinas or, less frequently, the shoreline, aiming at erosion control. Some of the conditions that favour floating breakwaters are:
- Poor foundation: Floating breakwaters might be a proper solution where poor foundations possibilities prohibit the application of bottom supported breakwaters.
- Deep water: In water depths in excess of 6 m, bottom connected breakwaters are often more expensive than floating breakwaters.
- Water quality: Floating breakwaters present a minimum interference with water circulation and fish migration.
- Ice problems: Floating breakwaters can be removed and towed to protected areas if ice formation is a problem. They may be suitable for areas where summer anchorage or moorage is required.
- Visual impact: Floating breakwaters have a low profile and present a minimum intrusion on the horizon, particularly for areas with high tide ranges.
- Breakwater layout: Floating breakwaters can usually be rearranged into a new layout with minimum effort.
Effectiveness
Floating breakwaters are very effective when their width is of order of half the wavelength and/or when their natural period of oscillation is much longer compared to the wave period.
The first requirement is seldom verified, and in this case the performance is uncertain. The performance of a floating breakwater depends on the strongly non-linear interaction of the incident wave (that may partially overtop the module and is in general short-crested and oblique) with the structure dynamics. The interaction becomes complicated by the forces induced by the mooring system and the connections between the modules. Accurate design is necessarily based on the combination of numerical and physical models.
Types of breakwaters
Floating breakwaters are commonly divided into four general categories:
- Box
- Pontoon
- Mat
- Tethered float.
For each category, some types of floating breakwaters are shown in Figures 1 - 5. The first three types have been much widely investigated by means of physical models and prototype experience, than the last one. Next subsections describes the use of the different types of breakwaters in practice.
Box breakwaters
Box type breakwaters are used most frequently (see also Figure 2). Reinforced concrete modules are either empty inside or, more frequently, have a core of light material (e.g. polystyrene). In the former case the risk of sinking of the structure is not negligible. Usually dimensions are limited to a width of a few meters.
Connections are either flexible, allowing preferably only the roll along the breakwater axis, or pre or post tensioned, to make them act as a single unit. In the latter case the efficiency is higher, but the forces between modules are also higher. The modular system as applied and the mooring system are primary points of concern for this kind of structures.
Large breakwaters are frequently built with used barges, ballasted to the desired draft with sand or rock.
Pontoon breakwaters
Pontoon types are effective since the overall width can be of the order of half the wavelength. In this case the expected attenuation of the wave height is significant. See also Figure 3.
Mat breakwaters
Within the mat category, the most used are made with tires. Although less effective, they have a low cost, they can be removed more easily, they can be constructed with unskilled labour and minimal equipment, they are subjected to lower anchor loads, they reflect less and they dissipate relatively more wave energy.
Tethered float breakwaters
Tethered float types are seldom used. A schematization is provided in figure 5.
See also
References
Please note that others may also have edited the contents of this article.
|
- Articles by Piero Ruol
- Theme 8
- Coastal erosion
- Policy and decision making in coastal management
- Land and ocean interactions
- Coastal erosion management
- Shoreline management
- Techniques and methods in coastal management
- Research, science and innovation in coastal management
- Geomorphological processes and natural coastal features
- Coastal defence
- Urban coastal areas
- Protection of coastal and marine zones